Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 501]
|
|
Сложность: 6- Классы: 8,9,10
|
На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой.
Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?
Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.
Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1
стоят рядом на верхней стороне AK квадрата AKLM со стороной 3.
Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?
|
|
Сложность: 2+ Классы: 7,8,9
|
Дан квадрат ABCD. На стороне AD внутрь квадрата построен
равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что CE = CF.
Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 501]