ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ключом шифра, называемого "решеткой", является прямоугольный трафарет размера 6 на 10 клеток. В трафарете вырезаны 15 клеток так, что при наложении его на прямоугольный лист бумаги размера 6 на 10 клеток четырьмя возможными способами его вырезы полностью покрывают всю площадь листа. Буквы сообщения (без пропусков) последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений. Прочтите исходный текст, если после зашифрования на листе бумаги оказался следующий текст (на русском языке): \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} \hline Р & П & Т & Е & Ш & А & В & Е & С & Л \\ \hline О & Я & Т & А & Л & - & Ь & З & Т & - \\ \hline - & У & К & Т & - & Я & А & Ь & - & С \\ \hline Н & П & - & Ь & Е & У & - & Ш & Л & С \\ \hline Т & И & Ь & З & Ы & Я & Е & М & - & О \\ \hline - & Е & Ф & - & - & Р & О & - & С & М \\ \hline \end{tabular} (Задача с сайта www.cryptography.ru.)

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1311]      



Задача 35524

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Из 11 шаров 2 радиоактивны. Про любой набор шаров за одну проверку можно узнать, имеется ли в нем хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Можно ли за 7 проверок найти оба радиоактивных шара?
Прислать комментарий     Решение


Задача 35638

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 8,9

Текст М И М О П Р А С Т Е Т И Р А С И С П Д А И С А Ф Е И И Б О Е Т К Ж Р Г Л Е О Л О И Ш И С А Н Н С Й С А О О Л Т Л Е Я Т У И Ц В Ы И П И Я Д П И Щ П Ь П С Е Ю Я Я получен из исходного сообщения перестановкой его букв. Текст У Щ Ф М Ш П Д Р Е Ц Ч Е Ш Ю Ш Ч Д А К Е Ч М Д В К Ш Б Е Е Ч Д Ф Э П Й Щ Г Ш Ф Щ Ц Е Ю Щ Ф П М Е Ч П М Е Р Щ М Е О Ф Ч Щ Х Е Ш Р Т Г Д И Ф Р С Я Ы Л К Д Ф Ф Е Е получен из того же исходного сообщения заменой каждой буквы на другую букву так, что разные буквы заменены разными, а одинаковые - одинаковыми. Восстановите исходное сообщение. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35668

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Дана криптограмма: $ \begin{array}{ccccc} ФН & \times & Ы & = & ФАФ \\ + & & \times & & - \\ ЕЕ & + & Е & = & НЗ \\ = & & = & & = \\ ИША & + & МР & = & ИМН \end{array} $ Восстановите цифровые значения букв, при которых справедливы все указанные равенства, если разным буквам соответствуют различные цифры. Расставьте буквы в порядке возрастания их цифровых значений и получите искомый текст. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35685

Темы:   [ Теория алгоритмов (прочее) ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Ключом шифра, называемого "решеткой", является прямоугольный трафарет размера 6 на 10 клеток. В трафарете вырезаны 15 клеток так, что при наложении его на прямоугольный лист бумаги размера 6 на 10 клеток четырьмя возможными способами его вырезы полностью покрывают всю площадь листа. Буквы сообщения (без пропусков) последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений. Прочтите исходный текст, если после зашифрования на листе бумаги оказался следующий текст (на русском языке): \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} \hline Р & П & Т & Е & Ш & А & В & Е & С & Л \\ \hline О & Я & Т & А & Л & - & Ь & З & Т & - \\ \hline - & У & К & Т & - & Я & А & Ь & - & С \\ \hline Н & П & - & Ь & Е & У & - & Ш & Л & С \\ \hline Т & И & Ь & З & Ы & Я & Е & М & - & О \\ \hline - & Е & Ф & - & - & Р & О & - & С & М \\ \hline \end{tabular} (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 60437

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9,10

Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .