ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольный треугольник ABC вписан квадрат так, что две его вершины лежат на гипотенузе AB, а две другие — на катетах. Радиус круга, описанного около треугольника ABC, относится к стороне квадрата как 13:6. Найдите углы треугольника.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 312]      



Задача 108563

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Докажите, что площадь треугольника равна половине произведения двух его соседних сторон на синус угла между ними, т.е.

S$\scriptstyle \Delta$ = $\displaystyle {\textstyle\frac{1}{2}}$ab sin$\displaystyle \gamma$,

где a и b — стороны треугольника, $ \gamma$ — угол, противолежащий третьей стороне.

Прислать комментарий     Решение


Задача 108565

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Докажите, что площадь треугольника равна половине произведения двух его высот, делённого на синус угла между сторонами, на которые эти высоты опущены, т.е.

S$\scriptstyle \Delta$ = $\displaystyle {\textstyle\frac{1}{2}}$ . $\displaystyle {\frac{h_{a}h_{b}}{\sin \gamma}}$,

где ha и hb — высоты, опущенные на стороны, равные a и b, а $ \gamma$ угол между этими сторонами.

Прислать комментарий     Решение


Задача 52943

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На высоте CE, опущенной из вершины C прямоугольного треугольника ABC на гипотенузу AB, как на диаметре построена окружность, которая пересекает катет BC в точке K. Найдите площадь треугольника BKE, если катет BC равен a и угол BAC равен $ \alpha$.

Прислать комментарий     Решение


Задача 53021

Темы:   [ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник ABC вписан квадрат так, что две его вершины лежат на гипотенузе AB, а две другие — на катетах. Радиус круга, описанного около треугольника ABC, относится к стороне квадрата как 13:6. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 53023

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник ABC вписан прямоугольник DEKM вдвое меньшей площади. Вершины D и E лежат на гипотенузе BC, вершины K и M — на катетах. Найдите углы треугольника ABC, если сторона DE прямоугольника относится к стороне DM как 5:2.

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .