ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ромбе ABCD со стороной (1 + $ \sqrt{5}$) и острым углом $ \angle$BAD = 60o расположена окружность, вписанная в треугольник ABD. Из точки C к окружности проведена касательная, пересекающая сторону AB в точке E. Найдите AE.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 501]      



Задача 53219

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD, сторона которого равна a, и построены две окружности. Первая окружность целиком расположена внутри квадрата ABCD, касается стороны AB в точке E, а также касается стороны BC и диагонали AC. Вторая окружность имеет центром точку A и проходит через точку E. Найдите площадь общей части двух кругов, ограниченных этой окружностью.

Прислать комментарий     Решение


Задача 53232

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В ромбе ABCD со стороной (1 + $ \sqrt{5}$) и острым углом $ \angle$BAD = 60o расположена окружность, вписанная в треугольник ABD. Из точки C к окружности проведена касательная, пересекающая сторону AB в точке E. Найдите AE.

Прислать комментарий     Решение


Задача 53673

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Радиус окружности, вписанной в ромб, равен r, а острый угол ромба равен $ \alpha$. Найдите сторону ромба.

Прислать комментарий     Решение


Задача 54405

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Метод координат на плоскости ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника.

Прислать комментарий     Решение


Задача 54432

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В плоскости дан квадрат с последовательно расположенными вершинами A, B, C, D и точка O. Известно, что OB = OD = 13, OC = = 5$ \sqrt{2}$ и что площадь квадрата больше 225. Найдите длину стороны квадрата и выясните, где расположена точка O - вне или внутри квадрата.

Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .