ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Вниз   Решение


Даны два числа. Найти их наибольший общий делитель.

Входные данные
Вводятся два натуральных числа, не превышающих 30000.

Выходные данные
Выведите НОД введенных чисел

Пример входного файла
9 12

Пример выходного файла
6

ВверхВниз   Решение


Дано N целых чисел. Требуется выбрать из них три таких числа,
произведение которых максимально.

Формат входных данных
Во входном файле записано сначала число N - количество чисел в
последовательности (3<=N<=100). Далее записана сама последовательность:
N целых чисел, по модулю не превышающих 1000.

Формат выходных данных
В выходной файл выведите три искомых числа в любом порядке.
Если существует несколько различных троек чисел, дающих
максимальное произведение, то выведите любую из них.

Пример входного файла
9
3 5 1 7 9 0 9 -3 10

Пример выходного файла
9 10 9

Пример входного файла
3
-5 -300 -12

Пример выходного файла
-5 -300 -12

ВверхВниз   Решение


Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1435]      



Задача 35601

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Треугольник (построения) ]
Сложность: 2
Классы: 8

Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.
Прислать комментарий     Решение


Задача 53373

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

Прислать комментарий     Решение

Задача 53388

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Прислать комментарий     Решение

Задача 53448

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.

Прислать комментарий     Решение

Задача 53552

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .