ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольный треугольник, каждый катет которого равен 6, вписан прямоугольник, имеющий с треугольником общий угол.
Найдите периметр прямоугольника.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 239]      



Задача 53488

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В прямоугольный треугольник, каждый катет которого равен 6, вписан прямоугольник, имеющий с треугольником общий угол.
Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 53902

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На продолжениях гипотенузы AB прямоугольного треугольника ABC за точки A и B соответственно взяты точки K и M, причём  AK = AC  и  BM = BC.  Найдите угол MCK.

Прислать комментарий     Решение

Задача 53962

Темы:   [ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

Прислать комментарий     Решение

Задача 108074

Темы:   [ Неравенства для углов треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Прислать комментарий     Решение

Задача 108430

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC угол C – прямой. Из центра C радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если  ∠B = 40°.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .