ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 211]
Треугольник ABC — равнобедренный. Радиус OA описанного круга образует с основанием AC угол OAC, равный 20o. Найдите угол BAC.
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
В прямоугольный треугольник вписана окружность. Гипотенуза делится точкой касания на отрезки, равные 5 и 12. Найдите площадь треугольника.
Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O1 и O2. Докажите, что треугольник O1DO2 — прямоугольный.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|