ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 501]      



Задача 79490

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.
Прислать комментарий     Решение


Задача 116258

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Задача 53650

Темы:   [ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

Прислать комментарий     Решение


Задача 53651

Темы:   [ Ромбы. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Угол при вершине A ромба ABCD равен 60o. На сторонах AB и BC взяты соответственно точки M и N, причём AM = BN. Докажите, что треугольник MDN — равносторонний.

Прислать комментарий     Решение


Задача 54108

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Построения ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте квадрат по его центру и двум точкам, лежащим на противоположных сторонах.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .