ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 1024]      



Задача 52904

Темы:   [ Подобные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а  AO = 39.

Прислать комментарий     Решение

Задача 53136

Темы:   [ Неравенство треугольника (прочее) ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

Прислать комментарий     Решение

Задача 53238

Темы:   [ Трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.

Прислать комментарий     Решение

Задача 53695

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

Прислать комментарий     Решение

Задача 53989

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прислать комментарий     Решение


Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .