ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC (AB = BC) медиана AD и биссектриса CE перпендикулярны. Найдите величину угла ADB. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 312]
Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) равны. Вершины A1, B1 и C1 расположены соответственно на продолжениях стороны BC за точку C, стороны BA за точку A, стороны AC за точку C, причём B1C1 ⊥ BC. Найдите угол B.
В равнобедренной трапеции ABCD боковая сторона AB и меньшее основание BC равны 2, а BD перпендикулярно AB. Найдите площадь этой трапеции.
В равнобедренном треугольнике ABC (AB = BC) медиана AD и биссектриса CE перпендикулярны. Найдите величину угла ADB.
В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла площади треугольника ABC?
В треугольнике ABC проведена биссектриса CD, при этом величины углов ADC и CDB относятся как 7:5. Найдите AD, если известно, что BC = 1, а угол BAC равен 30o.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 312] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|