ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника. Решение |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 501]
Дан квадрат ABCD, сторона которого равна a, и построены две окружности. Первая окружность целиком расположена внутри квадрата ABCD, касается стороны AB в точке E, а также касается стороны BC и диагонали AC. Вторая окружность имеет центром точку A и проходит через точку E. Найдите площадь общей части двух кругов, ограниченных этой окружностью.
В ромбе ABCD со стороной (1 + ) и острым углом BAD = 60o расположена окружность, вписанная в треугольник ABD. Из точки C к окружности проведена касательная, пересекающая сторону AB в точке E. Найдите AE.
Радиус окружности, вписанной в ромб, равен r, а острый угол ромба равен . Найдите сторону ромба.
Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника.
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|