ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямой взяты точки A, O и B. Точки A1 и B1 симметричны соответственно точкам A и B относительно точки O.
Найдите A1B, если  AB1 = 2.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 158]      



Задача 116130

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 2
Классы: 8,9

Автор: Фольклор

Hа доске была нарисована система координат и отмечены точки  A(1, 2)  и  B(3, 1).  Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.

Прислать комментарий     Решение

Задача 53305

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются в точке O, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок  AC = 10?

Прислать комментарий     Решение

Задача 53327

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.

Прислать комментарий     Решение

Задача 54755

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Центральная симметрия ]
Сложность: 2+
Классы: 8,9

На прямой взяты точки A, O и B. Точки A1 и B1 симметричны соответственно точкам A и B относительно точки O.
Найдите A1B, если  AB1 = 2.

Прислать комментарий     Решение

Задача 35023

Темы:   [ Построения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Внутри угла расположена точка O. Как провести отрезок AB с концами на сторонах угла, проходящий через точку O, который делится точкой O пополам?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .