ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площадь треугольника ABC равна 15$ \sqrt{3}$. Угол BAC равен 120o. Угол ABC больше угла ACB. Расстояние от вершины A до центра окружности, вписанной в треугольник ABC, равно 2. Найдите медиану треугольника ABC, проведённую из вершины B.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 448]      



Задача 54328

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В окружности проведены хорды AB и BC, причём AB = $ \sqrt{3}$, BC = 3$ \sqrt{3}$, $ \angle$ABC = 60o. Найдите длину той хорды окружности, которая делит угол ABC пополам.

Прислать комментарий     Решение


Задача 54695

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Точка O — центр окружности, вписанной в треугольник ABC. Известно, что BC = a, AC = b, $ \angle$AOB = 120o. Найдите сторону AB.

Прислать комментарий     Решение


Задача 54925

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC известно, что AB = 3, AC = 3$ \sqrt{7}$, $ \angle$ABC = 60o. Биссектриса угла ABC продолжена до пересечения в точке D с окружностью, описанной вокруг треугольника. Найдите BD.

Прислать комментарий     Решение


Задача 55280

Темы:   [ Отношение площадей подобных треугольников ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD, в которой BC и AD — основания, диагональ AC является биссектрисой угла BAD, равного 120o. Радиус окружности, описанной около треугольника ABD, равен $ \sqrt{3}$. Диагонали AC и BD пересекаются в точке O. Площади треугольников AOD и BOC относятся как 4:1. Найдите все стороны трапеции ABCD.

Прислать комментарий     Решение


Задача 55292

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Площадь треугольника ABC равна 15$ \sqrt{3}$. Угол BAC равен 120o. Угол ABC больше угла ACB. Расстояние от вершины A до центра окружности, вписанной в треугольник ABC, равно 2. Найдите медиану треугольника ABC, проведённую из вершины B.

Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .