ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1547]      



Задача 53365

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Через середину S отрезка MN, концы которого лежат на боковых сторонах равнобедренного треугольника, проведена прямая, параллельная основанию треугольника и пересекающая боковые стороны в точках K и L. Докажите, что проекция отрезка MN на основание треугольника равна отрезку KL.

Прислать комментарий     Решение

Задача 55373

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Задача 55634

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Прямая, проходящая через точку M основания AB равнобедренного треугольника ABC, пересекает прямые AC и BC в точках A1 и B1 соответственно. Докажите, что $ {\frac{AA_{1}}{A_{1}M}}$ = $ {\frac{BB_{1}}{B_{1}M}}$.

Прислать комментарий     Решение


Задача 55681

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 55703

Темы:   [ Параллельный перенос (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, разность расстояний от которых до двух данных непараллельных прямых имеет данную величину.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .