Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 1024]
Окружность касается двух параллельных прямых и их секущей.
Докажите, что отрезок секущей, заключённый между параллельными прямыми, виден из центра окружности под прямым углом.
Две прямые, проходящие через точку M, лежащую вне окружности с центром O, касаются окружности в точках A и B. Отрезок OM делится окружностью пополам. В каком отношении отрезок OM делится прямой
AB?
Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.
Прямые
PA и
PB касаются окружности с центром
O
(
A и
B — точки касания). Проведена третья касательная
к окружности, пересекающая отрезки
PA и
PB в точках
X
и
Y. Докажите, что величина угла
XOY не зависит от
выбора третьей касательной.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 1024]