Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 1547]
Дан треугольник
ABC. Постройте две прямые
x и
y так, чтобы для
любой точки
M на стороне
AC сумма длин отрезков
MXM и
MYM,
проведенных из точки
M параллельно прямым
x и
y до пересечения со
сторонами
AB и
BC треугольника, равнялась 1.
В равнобедренном треугольнике
ABC из середины
H основания
BC
опущен перпендикуляр
HE на боковую сторону
AC;
O — середина
отрезка
HE. Докажите, что прямые
AO и
BE перпендикулярны.
Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и A1B1C1 равны.
Дан треугольник
ABC. Точка
M, расположенная
внутри треугольника, движется параллельно стороне
BC до
пересечения со стороной
CA, затем параллельно
AB до
пересечения с
BC, затем параллельно
AC до пересечения
с
AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
|
|
Сложность: 3 Классы: 7,8,9
|
Двое игроков поочередно выкладывают на прямоугольный стол пятаки.
Монету разрешается класть только на свободное место. Проигрывает тот,
кто не может сделать очередной ход. Докажите, что первый игрок всегда
может выиграть.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 1547]