ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Вниз   Решение


В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

ВверхВниз   Решение


Известно, что  p > 3  и p – простое число.
  а) Как вы думаете, будет ли хотя бы одно из чисел  p + 1  и  p – 1  делиться на 4?
  б) А на 5?

ВверхВниз   Решение


Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 57124

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Прислать комментарий     Решение


Задача 57125

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
Прислать комментарий     Решение


Задача 57126

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Дан треугольник ABC. Найдите ГМТ X, удовлетворяющих неравенствам  AX $ \leq$ BX $ \leq$ CX.
Прислать комментарий     Решение


Задача 57127

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.
Прислать комментарий     Решение


Задача 57128

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

На окружности фиксирована точка A. Найдите ГМТ X, делящих хорды с концом A в отношении 1 : 2, считая от точки A.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .