ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.

   Решение

Задачи

Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 12601]      



Задача 57241

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.
Прислать комментарий     Решение


Задача 57250

Тема:   [ Окружности (построения) ]
Сложность: 3
Классы: 8,9

Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.
Прислать комментарий     Решение


Задача 57262

Тема:   [ Построения (прочее) ]
Сложность: 3
Классы: 8,9

а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.
Прислать комментарий     Решение


Задача 57267

Тема:   [ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что угол величиной no, где n — целое число, не делящееся на 3, можно разделить на n равных частей с помощью циркуля и линейки.
Прислать комментарий     Решение


Задача 57278

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.
Прислать комментарий     Решение


Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .