ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.

   Решение

Задачи

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 12601]      



Задача 57328

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Докажите, что если длины сторон треугольника связаны неравенством  a2 + b2 > 5c2, то c — длина наименьшей стороны.
Прислать комментарий     Решение


Задача 57329

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.
Прислать комментарий     Решение


Задача 57336

Тема:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 3
Классы: 9

Пусть E, F, G и H — середины сторон AB, BC, CD и DA четырехугольника ABCD. Докажите, что SABCD $ \leq$ EG . HF$ \le$(AB + CD)(AD + BC)/4.
Прислать комментарий     Решение


Задача 57337

Тема:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
Сложность: 3
Классы: 9

Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.
Прислать комментарий     Решение


Задача 57341

Тема:   [ Неравенства с площадями ]
Сложность: 3
Классы: 9

Точки M и N лежат на сторонах AB и AC треугольника ABC, причем AM = CN и AN = BM. Докажите, что площадь четырехугольника BMNC по крайней мере в три раза больше площади треугольника AMN.
Прислать комментарий     Решение


Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .