ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Иван Семёнов выполняет тест ЕГЭ по математике. Экзамен состоит из заданий трёх типов: A, B и C. К каждому из заданий типа А даны на выбор четыре варианта ответа, только один из которых верный. Всего таких заданий 10. Задания типа B и C требуют развёрнутого ответа. Так как Ваня постоянно прогуливал, его познания в математике неглубоки. Задания типа А он выполняет, выбирая ответы наугад. Первое из заданий типа В Ваня решает с вероятностью ⅓. Больше ничего Иван сделать не может. За правильный ответ на одно задание типа A ставится 1 балл, за задание типа B – 2 балла. С какой вероятностью Ваня наберёт больше 5 баллов?

Возьмите задания типа A из пробного варианта ЕГЭ 2008 года. (http://ege.edu.ru/demo/math.zip) и проведите 10 раз эксперимент по случайному выбору ответов. Сравните результат с полученным теоретически (для 5 правильных ответов). Убедитесь, что результаты не сильно отличаются.

Вниз   Решение


В школьном футбольном турнире участвуют 8 команд, одинаково хорошо играющих в футбол. Каждая игра заканчивается победой одной из команд. Случайно выбираемый по жребию номер определяет положение команды в турнирной таблице:

Какова вероятность того, что команды А и B:
  а) встретятся в полуфинале;
  б) встретятся в финале.

ВверхВниз   Решение


Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Задача 108074

Темы:   [ Неравенства для углов треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Прислать комментарий     Решение

Задача 57455

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что 1 - sin($ \alpha$/2) $ \geq$ 2 sin($ \beta$/2)sin($ \gamma$/2).
Прислать комментарий     Решение


Задача 57456

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).
Прислать комментарий     Решение


Задача 116804

Темы:   [ Неравенства для углов треугольника ]
[ Против большей стороны лежит больший угол ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .