ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две точки A и B. Найдите геометрическое место точек, каждая из которых симметрична точке A относительно некоторой прямой, проходящей через точку B.
![]() ![]() Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2? ![]() ![]() ![]() Точки K и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AK = BK и AN = 2NC. ![]() ![]() ![]() Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.
![]() ![]() ![]() Двое игроков поочередно выкладывают на прямоугольный стол пятаки. Монету разрешается класть только на свободное место. Проигрывает тот, кто не может сделать очередной ход. Докажите, что первый игрок всегда может выиграть. ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 109]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |