ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны угол ABC и точка D внутри его. Постройте отрезок с концами на сторонах данного угла, середина которого находилась бы в точке D.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 158]      



Задача 57851

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Через данную точку A проведите прямую так, чтобы отрезок, заключенный между точками пересечения ее с данной прямой и данной окружностью, делился точкой A пополам.
Прислать комментарий     Решение


Задача 57852

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Даны угол ABC и точка D внутри его. Постройте отрезок с концами на сторонах данного угла, середина которого находилась бы в точке D.
Прислать комментарий     Решение


Задача 57853

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Даны угол и внутри его точки A и B. Постройте параллелограмм, для которого точки A и B — противоположные вершины, а две другие вершины лежат на сторонах угла.
Прислать комментарий     Решение


Задача 97767

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9,10,11

M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

Прислать комментарий     Решение

Задача 108886

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD точки K , L , M , N – середины сторон соответственно AB , BC , CD , DA . Прямые AL и CK пересекаются в точке P , прямые AM и CN – пересекаются в точке Q . Оказалось, что APCQ – параллелограмм. Докажите, что ABCD – тоже параллелограмм.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .