ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана прямая l и две точки A и B по одну сторону от нее. Найдите на прямой l точку X так, чтобы длина ломаной AXB была минимальна.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1547]      



Задача 57881

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.
Прислать комментарий     Решение


Задача 57885

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.
Прислать комментарий     Решение


Задача 57886

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Дана прямая l и две точки A и B по одну сторону от нее. Найдите на прямой l точку X так, чтобы длина ломаной AXB была минимальна.
Прислать комментарий     Решение


Задача 57889

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Докажите, что композиция симметрий ScoSboSa является симметрией относительно некоторой прямой тогда и только тогда, когда данные прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57890

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).
Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .