Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 1547]
К двум окружностям, расположенным одна вне другой, проведены одна
внешняя и одна внутренняя касательные. Рассмотрим две прямые, каждая из
которых проходит через точки касания, принадлежащие одной из окружностей.
Докажите, что точка пересечения этих прямых расположена
на прямой, соединяющей центры окружностей.
Через общую точку
A окружностей
S1 и
S2
проведите прямую
l так, чтобы разность длин хорд,
высекаемых на
l окружностями
S1 и
S2 имела заданную
величину
a.
Докажите, что любое движение плоскости является
композицией не более чем трех симметрий относительно прямых.
Докажите, что любое движение первого рода
является поворотом или параллельным переносом.
Докажите, что любое движение второго рода является скользящей симметрией.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 1547]