ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1026]      



Задача 57939

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так, что $ \overrightarrow{AD}$ = $ \overrightarrow{DK}$. Докажите, что треугольник BHD тоже правильный.
Прислать комментарий     Решение


Задача 57947

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.
Прислать комментарий     Решение


Задача 57948

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

По двум прямым, пересекающимся в точке P, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка A, по другой — точка B. Через точку P они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника ABP проходит через некоторую фиксированную точку, отличную от P.
Прислать комментарий     Решение


Задача 57955

Тема:   [ Композиции поворотов ]
Сложность: 4
Классы: 9

Докажите, что композиция двух поворотов на углы, в сумме не кратные  360o, является поворотом. В какой точке находится его центр и чему равен угол поворота? Исследуйте также случай, когда сумма углов поворотов кратна  360o.
Прислать комментарий     Решение


Задача 57957

Темы:   [ Композиции поворотов ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .