ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть первое число Фибоначчи, делящееся на m, есть Fk. Докажите, что m | Fn тогда и только тогда, когда k | n. ![]() ![]() Поворотные гомотетии P1 и P2 с центрами A1 и A2 имеют один и тот же угол поворота, а произведение их коэффициентов равно 1. Докажите, что композиция P2oP1 является поворотом, причем его центр совпадает с центром другого поворота, переводящего A1 в A2 и имеющего угол поворота 2 ![]() ![]() ![]() По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B.
На сторонах AB и BC остроугольного треугольника ABC построены как на основаниях равнобедренные треугольники AFB и BLC, причём один из них лежит внутри треугольника ABC, а другой построен во внешнюю сторону. При этом ∠AFB = ∠BLC и ∠CAF = ∠ACL. Докажите, что прямая FL отсекает от угла ABC равнобедренный треугольник.
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |