ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее значение может принимать наибольший общий делитель чисел a и b, если известно, что  ab = 600?

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 2440]      



Задача 60483

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если в наборе целых чисел a1, ..., an хотя бы одно отлично от 0, то они имеют наибольший общий делитель.

Прислать комментарий     Решение

Задача 60484

Темы:   [ НОД и НОК. Взаимная простота ]
[ Геометрия на клетчатой бумаге ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10

В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
  а) Через какое число узлов она проходит?
  б) На сколько частей эта диагональ делится линиями сетки?

Прислать комментарий     Решение

Задача 60487

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

В задаче 60274 доказана возможность деления с остатком произвольного целого числа a на натуральное число b.
Докажите, что из равенства  a = bq + r  следует соотношение  (a, b) = (b, r).

Прислать комментарий     Решение

Задача 60492

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее значение может принимать наибольший общий делитель чисел a и b, если известно, что  ab = 600?

Прислать комментарий     Решение

Задача 60493

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа a1, a2, ..., a49 удовлетворяют равенству  a1 + a2 + ... + a49 = 540.
Какое наибольшее значение может принимать их наибольший общий делитель?

Прислать комментарий     Решение

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .