Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 120]
[Теорема Лейбница]
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что p – простое тогда и только тогда, когда
(p – 2)! ≡ 1 (mod p).
Сколько цифр имеет число 2100?
|
|
Сложность: 4- Классы: 8,9,10
|
На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab. Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.
|
|
Сложность: 4 Классы: 10,11
|
Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?
|
|
Сложность: 4 Классы: 8,9,10
|
Первоначально на доске написано число 2004!. Два игрока ходят по очереди. Игрок в свой ход вычитает из написанного числа какое-нибудь натуральное число, которое делится не более чем на 20 различных простых чисел (так, чтобы разность была неотрицательна), записывает на доске эту разность, а старое число стирает. Выигрывает тот, кто получит 0. Кто из играющих – начинающий или его соперник – может гарантировать себе победу, и как ему следует играть?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 120]