ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 411]      



Задача 60985

 [Правило знаков Декарта]
Темы:   [ Многочлены (прочее) ]
[ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

Прислать комментарий     Решение

Задача 61316

Темы:   [ Линейные рекуррентные соотношения ]
[ Цепные (непрерывные) дроби ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Докажите, что для чисел {xn} из задачи 61297 можно в явном виде указать разложения в цепные дроби:  xn+1 = [1;].
Оцените разность  |xn|.

Прислать комментарий     Решение

Задача 64532

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Франк М.

В ячейку памяти компьютера записали число 6. Далее компьютер делает миллион шагов. На шаге номер n он увеличивает число в ячейке на наибольший общий делитель этого числа и n. Докажите, что на каждом шаге компьютер увеличивает число в ячейке либо на 1, либо на простое число.

Прислать комментарий     Решение

Задача 64730

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Докажите, что для любого натурального n найдётся натуральное число, десятичная запись квадрата которого начинается n единицами, а заканчивается какой-то комбинацией из n единиц и двоек.

Прислать комментарий     Решение

Задача 98090

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Отношение порядка ]
Сложность: 5-
Классы: 10,11

Автор: Анджанс А.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .