ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнения:
 а)  z4 = 4;   б)  z² + |z| = 0;   в)  z² + = 0;   г)  z² + |z|² = 0;   д)  (z + i)4 = (z – i)4;   е)  z³ – = 0.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 61090

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3
Классы: 9,10,11

Докажите, что все корни уравнения  zn = 1  могут быть записаны в виде  1, α, α2, ..., αn–1.

Прислать комментарий     Решение

Задача 61110

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3
Классы: 9,10,11

Найдите все значения корней:
  a)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

Прислать комментарий     Решение

Задача 61082

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3+
Классы: 9,10,11

Решите в комплексных числах уравнения:
  а)  z4 – 4z3 + 6z2 – 4z – 15 = 0;   б)  z3 + 3z2 + 3z + 3 = 0;   в)  z4 + (z – 4)4 = 32;   г)  

Прислать комментарий     Решение

Задача 61094

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3+
Классы: 9,10,11

Решите уравнение  x4 + x3 + x2 + x + 1 = 0.

Прислать комментарий     Решение

Задача 61112

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения:
 а)  z4 = 4;   б)  z² + |z| = 0;   в)  z² + = 0;   г)  z² + |z|² = 0;   д)  (z + i)4 = (z – i)4;   е)  z³ – = 0.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .