ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К чему будет стремиться последовательность из предыдущей задачи 9.46, если в качестве начального условия выбрать x1 = - 1?

   Решение

Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 694]      



Задача 88014

Темы:   [ Взвешивания ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 7,8,9,10

Имеются чашечные весы, любые гири и десять мешков с монетами. Все монеты во всех мешках одинаковы по внешнему виду, но в одном из мешков все монеты фальшивые и каждая весит по 15 г, а в остальных девяти мешках все монеты настоящие и каждая весит по 20 г. Как при помощи одного взвешивания определить, в каком мешке фальшивые монеты?
Прислать комментарий     Решение


Задача 107634

Темы:   [ Геометрические интерпретации в алгебре ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

{a1, a2, ..., a20} — набор целых положительных чисел.
Строим новый набор чисел {b0, b1, b2, ...} по следующему правилу:
b0 — количество чисел исходного набора, которые больше 0,
b1 — количество чисел исходного набора, которые больше 1,
b2 — количество чисел исходного набора, которые больше 2,
и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора.
Прислать комментарий     Решение


Задача 34952

Темы:   [ Индукция (прочее) ]
[ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. (Последовательность Фибоначчи {an} определяется условиями a1=1, a2=2, an+2=an+1+an.)
Прислать комментарий     Решение


Задача 61297

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 10,11

Вавилонский алгоритм вычисления $ \sqrt{2}$. Последовательность чисел {xn} задана условиями:

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$xn + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (n $\displaystyle \geqslant$ 1).

Докажите, что $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{2}$.

Прислать комментарий     Решение

Задача 61298

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 10,11

К чему будет стремиться последовательность из предыдущей задачи 9.46, если в качестве начального условия выбрать x1 = - 1?

Прислать комментарий     Решение

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .