ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любого натурального n сумма     лежит в пределах от ½ до ¾.

   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 590]      



Задача 60519

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все взаимно простые a и b, для которых   = 3/13.

Прислать комментарий     Решение

Задача 61288

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
[ Выпуклость и вогнутость ]
Сложность: 3+
Классы: 10,11

Пусть  |x1| ≤ 1  и   |x2| ≤ 1.  Докажите неравенство  

Прислать комментарий     Решение

Задача 61374

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Докажите для положительных значений переменных неравенство  (a + b + c)(a² + b² + c²) ≥ 9abc.

Прислать комментарий     Решение

Задача 61390

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого натурального n справедливо неравенство  

Прислать комментарий     Решение

Задача 61391

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для любого натурального n сумма     лежит в пределах от ½ до ¾.

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .