ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите тождество

$\displaystyle \sum\limits_{k=0}^{n}$$\displaystyle {\dfrac{1}{F_{2^k}}}$ = 3 - $\displaystyle {\dfrac{F_{2^n-1}}{F_{2^n}}}$        (n $\displaystyle \geqslant$ 1).



   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 233]      



Задача 78781

Тема:   [ Рекуррентные соотношения ]
Сложность: 3+
Классы: 11

Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.
Прислать комментарий     Решение


Задача 60581

 [Числа Фибоначчи и треугольник Паскаля]
Темы:   [ Числа Фибоначчи ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

Прислать комментарий     Решение

Задача 61432

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Докажите тождество

$\displaystyle \sum\limits_{k=0}^{n}$$\displaystyle {\dfrac{1}{F_{2^k}}}$ = 3 - $\displaystyle {\dfrac{F_{2^n-1}}{F_{2^n}}}$        (n $\displaystyle \geqslant$ 1).



Прислать комментарий     Решение

Задача 61302

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 10,11

Старый калькулятор I. а) Предположим, что мы хотим найти $ \sqrt[3]{x}$ (x > 0) на калькуляторе, который кроме четырех обычных арифметических действий умеет находить $ \sqrt{x}$. Рассмотрим следующий алгоритм. Строится последовательность чисел {yn}, в которой y0 — произвольное положительное число, например, y0 = $ \sqrt{\sqrt{x}}$, а остальные элементы определяются соотношением

yn + 1 = $\displaystyle \sqrt{\sqrt{x\,y_n}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что

$\displaystyle \lim\limits_{n\to\infty}^{}$yn = $\displaystyle \sqrt[3]{x}$.


б) Постройте аналогичный алгоритм для вычисления корня пятой степени.

Прислать комментарий     Решение

Задача 61485

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .