ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 233]
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, ..., xn = [1,5xn–1].
Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
Рассматривается числовой треугольник: (первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 233] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|