ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть f (x, y) — гармоническая функция (определение смотри в задаче 11.28). Докажите, что функции f (x, y) = f (x + 1, y) - f (x, y) и f (x, y) = f (x, y + 1) - f (x, y) также будут гармоническими. Решение |
Страница: 1 [Всего задач: 5]
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)). Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.
Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z выполнены тождества: x*x = 0 и x*(y*z) = (x*y) + z.
(x, y) 2 | f (x, y)| M.
Докажите, что
функция f (x, y) равна константе.
Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества:
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|