ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 61473

 [Лягушка-путешественница]
Темы:   [ Классическая комбинаторика (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 9,10,11

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

Прислать комментарий     Решение

Задача 98427

Темы:   [ Периодичность и непериодичность ]
[ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 7,8,9

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Прислать комментарий     Решение

Задача 116589

Темы:   [ Числовые последовательности (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

Прислать комментарий     Решение

Задача 60582

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Линейные рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Вычислите сумму:  

Прислать комментарий     Решение

Задача 60602

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Докажите следующие свойства подходящих дробей:
  а)  PkQk–2Pk–2Qk = (–1)kak  (k ≥ 2);
  б)   =   (k ≥ 1);
  в)  Q1 < Q2 < ... < Qn;
  г)   < < < ... ≤ ≤ ... < < < ;

  д)   <   (k, l ≥ 0).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .