ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Какое из двух чисел больше:

  а)     (100 двоек) или     (99 троек);

  б)     (100 троек) или     (99 четвёрок).

Вниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

ВверхВниз   Решение


Пусть F(x) — производящая функция последовательности {an}. Докажите равенство $ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$an = $ {\dfrac{F^{(n)}(x)}{n!}}$$ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 61490

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 10,11

Пусть F(x) — производящая функция последовательности {an}. Докажите равенство $ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$an = $ {\dfrac{F^{(n)}(x)}{n!}}$$ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.

Прислать комментарий     Решение

Задача 61495

Темы:   [ Формальные степенные ряды ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 9,10,11

Докажите тождество:

(1 + x + x2 +...+ x9)(1 + x10 + x20 +...+ x90
×(1 + x100 + x200 +...+ x900)...= $\displaystyle {\dfrac{1}{1-x}}$.


Прислать комментарий     Решение

Задача 61514

Темы:   [ Формальные степенные ряды ]
[ Двоичная система счисления ]
Сложность: 3
Классы: 8,9,10,11

Определите коэффициент an в разложении

(1 + qx)(1 + qx2)(1 + qx4)(1 + qx8)(1 + qx16)...= a0 + a1x + a2x2 + a3x3 +...


Прислать комментарий     Решение

Задача 61487

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Найдите произведения следующих формальных степенных рядов:

а) (1 + x + x2 + x3 +...)(1 - x + x2 - x3 +...);
б) (1 + x + x2 + x3 +...)2;
в) $ \left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + x + $ {\dfrac{x^2}{2!}}$ +...+ $ {\dfrac{x^n}{n!}}$ +...$ \left.\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right)$$ \left(\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right.$1 - x + $ {\dfrac{x^2}{2!}}$ -...+ $ {\dfrac{(-x)^n}{n!}}$ +...$ \left.\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right)$.

Прислать комментарий     Решение

Задача 61488

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Обращение степенного ряда. Докажите, что если a0$ \ne$ 0, то для ряда F(x) существует ряд F-1(x) = b0 + b1x +...+ bnxn +... такой, что F(x)F-1(x) = 1.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .