ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 203]      



Задача 116817

Темы:   [ Математическая логика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

Про группу из пяти человек известно, что:

   Алеша на 1 год старше Алексеева,
   Боря на 2 года старше Борисова,
   Вася на 3 года старше Васильева,
   Гриша на 4 года старше Григорьева,
   а еще в этой группе есть Дима и Дмитриев.

Кто старше и на сколько: Дима или Дмитриев?

Прислать комментарий     Решение

Задача 35081

Темы:   [ Математическая логика (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10

Двум гениям сообщили по натуральному числу и сказали, что эти числа отличаются на 1. После этого они по очереди задают друг другу один и тот же вопрос: "Знаешь ли ты мое число?". Докажите, что рано или поздно один из них ответит положительно.

Прислать комментарий     Решение

Задача 35502

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 7,8,9

Одного из близнецов зовут Ваня, другого – Витя. Один из братьев всегда говорит правду, а другой всегда лжет. Можно задать один вопрос одному из братьев, на который тот ответит "да" или "нет". Выясните, кого из близнецов как зовут.

Прислать комментарий     Решение

Задача 60322

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

Прислать комментарий     Решение

Задача 64322

Темы:   [ Математическая логика (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 7,8

Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 203]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .