Страница:
<< 1 2 3 4 [Всего задач: 19]
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что точки, соответствующие комплексным числам
a,
b,
c,
лежат на одной прямой тогда и только тогда, когда число
, называемое
простым отношением трех комплексных чисел,
вещественно.
б) Докажите, что точки, соответствующие комплексным числам
a,
b,
c,
d,
лежат на одной окружности (или на одной прямой) тогда и только тогда, когда
число
:
, называемое
двойным отношением
четырех комплексных чисел, вещественно.
|
|
Сложность: 5+ Классы: 10,11
|
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
|
|
Сложность: 4+ Классы: 9,10
|
Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.
Страница:
<< 1 2 3 4 [Всего задач: 19]