ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 35033

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Найти все действительные решения уравнения с 4 неизвестными:   x2 + y2 + z2 + t2 = x(y + z + t).

Прислать комментарий     Решение

Задача 64671

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Показательные уравнения ]
Сложность: 3+
Классы: 10,11

Число a – корень уравнения  х11 + х7 + х3 = 1.  При каких натуральных значениях n выполняется равенство  a4 + a3 = an + 1?

Прислать комментарий     Решение

Задача 64963

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

Прислать комментарий     Решение

Задача 66692

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 8,9,10

В квадрате $4\times4$ расставили целые числа так, что в каждом из восьми рядов (строках и столбцах) сумма чисел одна и та же. Семь чисел известны, а остальные скрыты (см. рисунок).

Можно ли по имеющимся данным восстановить
  а) хотя бы одно скрытое число;
  б) хотя бы два скрытых числа?

Прислать комментарий     Решение

Задача 67020

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Коллекция Саши состоит из монет и наклеек, причём монет меньше, чем наклеек, но хотя бы одна есть. Саша выбрал некоторое положительное число $t>1$ (не обязательно целое). Если он увеличит количество монет в $t$ раз, не меняя количества наклеек, то в его коллекции будет $100$ предметов. Если вместо этого он увеличит количество наклеек в $t$ раз, не меняя количества монет, то у него будет $101$ предмет. Сколько наклеек могло быть у Саши? Найдите все возможные ответы и докажите, что других нет.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .