ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте? ![]() |
Страница: << 98 99 100 101 102 103 104 >> [Всего задач: 590]
Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2.
Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком.
Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p.
На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте?
Страница: << 98 99 100 101 102 103 104 >> [Всего задач: 590] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |