ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK. ![]() |
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 2247]
O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK.
Параллелограмм ABCD таков, что ∠B < 90° и AB < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D. Оказалось, что ∠EDA = ∠FDC. Найдите угол ABC.
Дан параллелограмм ABCD, в котором AB < AC < BC. Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что ∠ABF = ∠DCE. Найдите угол ABC.
Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Четырёхугольник АВСD вписан в окружность, I – центр вписанной окружности треугольника ABD.
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |