ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два шара касаются плоскости α в точках A и B и расположены по разные стороны от этой плоскости. Расстояние между центрами этих шаров равно 10. Третий шар внешним образом касается двух данных шаров, а его центр O лежит в плоскости α . Известно, что AO = OB = 2 ![]() ![]() Правильная игральная кость бросается много раз. Известно, что в какой-то момент сумма очков стала равна ровно 2010. ![]() ![]() |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]
Если один человек тратит в очереди одну минуту на ожидание, будем говорить, что
бесцельно затрачена одна человеко-минута. В очереди в банке стоит восемь человек, из них пятеро планируют простые операции, занимающие 1 минуту, а остальные планируют длительные операции, занимающие 5 минут. Найдите:
Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то
дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.
В здании n этажей и две лестницы, идущие от первого до последнего этажа. На каждой лестнице между каждыми двумя этажами на промежуточной лестничной площадке есть дверь, разделяющая этажи (с лестницы на этаж пройти можно, даже если дверь заперта). Комендант решил, что слишком много открытых дверей – это плохо, и запер ровно половину дверей, выбрав двери случайным образом. Какова вероятность того, что можно подняться с первого этажа на последний, проходя только через открытые двери?
Правильная игральная кость бросается много раз. Известно, что в какой-то момент сумма очков стала равна ровно 2010.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |