ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие. Рассеянный Учёный нажал очень много кнопок в случайной последовательности. Найдите приблизительно вероятность, с которой результат получившейся цепочки действий – нечётное число?

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 694]      



Задача 65336

Темы:   [ Дискретное распределение ]
[ Линейные рекуррентные соотношения ]
[ Предел последовательности, сходимость ]
[ Условная вероятность ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10,11

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие. Рассеянный Учёный нажал очень много кнопок в случайной последовательности. Найдите приблизительно вероятность, с которой результат получившейся цепочки действий – нечётное число?

Прислать комментарий     Решение

Задача 65352

Темы:   [ Дискретное распределение ]
[ Геометрическая прогрессия ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p  (0 < p < 1).  Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите:
  а) Вероятность того, что упадёт ровно k гномиков.
  б) Математическое ожидание числа упавших гномиков.

Прислать комментарий     Решение

Задача 65460

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

Прислать комментарий     Решение

Задача 73601

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Вот несколько примеров, когда сумма квадратов k последовательных натуральных чисел равна сумме квадратов k – 1 следующих натуральных чисел:

32 + 42 = 52,

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442,

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652.

Найдите общую формулу, охватывающую все такие случаи.
Прислать комментарий     Решение


Задача 78247

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.
Прислать комментарий     Решение


Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .