ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 111786

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Прислать комментарий     Решение

Задача 53381

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Удвоение медианы ]
[ Признаки равенства прямоугольных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.

Прислать комментарий     Решение

Задача 64780

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10

Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что  AB0 = BA0.

Прислать комментарий     Решение

Задача 65116

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что  CB + CL = AB.

Прислать комментарий     Решение

Задача 65570

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Отношения линейных элементов подобных треугольников ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .