ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
  a) середины двух его противоположных сторон;
  б) середины двух его соседних сторон?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 111325

Темы:   [ Наглядная геометрия ]
[ Перенос помогает решить задачу ]
[ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?

Прислать комментарий     Решение

Задача 65577

Темы:   [ Наглядная геометрия ]
[ Симметрия помогает решить задачу ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
  a) середины двух его противоположных сторон;
  б) середины двух его соседних сторон?

Прислать комментарий     Решение

Задача 66066

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 6,7

У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

Прислать комментарий     Решение

Задача 66185

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 7,8,9,10

а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку?

б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.
(Торт и коробку считайте плоскими фигурами.)

Прислать комментарий     Решение

Задача 66190

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку?

б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°.

(Торт и коробку считайте плоскими фигурами.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .