Страница: 1
2 3 >> [Всего задач: 12]
Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка [1, 2] и заставляет программу решать уравнение 3x + A = 0. Найдите вероятность того, что корень этого уравнения меньше чем –0,4.
|
|
Сложность: 3+ Классы: 9,10,11
|
Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
а) Какова вероятность того, что они встретятся?
б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В
квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.
|
|
Сложность: 3+ Классы: 9,10,11
|
Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на
листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.
|
|
Сложность: 3+ Классы: 9,10,11
|
В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина A окажется восточнее двух других вершин.
Страница: 1
2 3 >> [Всего задач: 12]