ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



Задача 66265

Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9,10

Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

Прислать комментарий     Решение

Задача 117007

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вспомогательные равные треугольники ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 5,6,7

Автор: Мухин Д.Г.

Биссектрисы треугольника ABC пересекаются в точке I,  ∠ABC = 120°.  На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что  AP = CQ = AC.  Докажите, что угол PIQ – прямой.

Прислать комментарий     Решение

Задача 64908

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

Прислать комментарий     Решение

Задача 66258

Темы:   [ Четырехугольники (прочее) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Биссектриса угла (ГМТ) ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

Прислать комментарий     Решение

Задача 110801

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы между биссектрисами ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Вписанная окружность касается сторон BC, AC и AB треугольника ABC в точках A1, B1 и C1 соответственно. Точки A2, B2 и C2 – центры окружностей, вписанных в треугольники соответственно AB1C1, BA1C1 и CA1B1 соответственно. Докажите, что прямые A1A2, B1B2 и C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .