ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.

   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2440]      



Задача 66478

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?
Прислать комментарий     Решение


Задача 66556

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9,10

Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Прислать комментарий     Решение


Задача 66558

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Индукция (прочее) ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10

Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?
Прислать комментарий     Решение


Задача 66568

Тема:   [ Теория чисел. Делимость ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Прислать комментарий     Решение


Задача 66579

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?
Прислать комментарий     Решение


Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .