ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 2440]      



Задача 66581

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Дидин М.

В комнате находится несколько детей и куча из 2021 конфеты. Каждый из них по очереди подходит к куче, делит количество конфет в ней на количество детей в комнате (включая себя), округляет (если получилось нецелое число), забирает полученное число конфет и покидает комнату. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Задача 66605

Темы:   [ Теория чисел. Делимость ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
Прислать комментарий     Решение


Задача 66629

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
Прислать комментарий     Решение


Задача 66637

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

На контурной карте России 85 регионов. Вовочка хочет покрасить на карте каждый регион в белый, синий или красный цвет так, чтобы белый и красный цвета не имели общей границы. При этом один или даже два цвета можно не использовать. Докажите, что количество вариантов такой раскраски нечётно.
Прислать комментарий     Решение


Задача 66700

Тема:   [ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10,11

В строку выписаны 39 чисел, не равных нулю. Сумма каждых двух соседних чисел положительна, а сумма всех чисел отрицательна.
Каков знак произведения всех чисел?

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .